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A n a l y t i c a l  d e p e n d e n c e s  g o v e r n i n g  t h e  m o t i o n  p a r a m e t e r s  a r e  o b t a i n e d  f o r  t h e  t w o - d i m e n s i o n a l  

p r o b l e m  of t h e  m o t i o n  of  g r a n u l e s  e j e c t e d  a t  a n  a r b i t r a r y  a n g l e  to  t h e  h o r i z o n  in  a n  o b l i q u e l y  

d i r e c t e d  s t r e a m  w i t h  a p l a n e  v e l o c i t y  p r o f i l e .  

The need to determine the parameters of two-dimensional motion of bodies ejected at an angle to 
the horizon originates in a number of practical cases. The motion of the ambient medium hence often 
turns out to be obliquely directed. 

Such a situation can hold, for instance, in the separate stages of the tower granulation process. 

As is easy to determine, the soaring velocities of granules of 1-3 mm size are on the order of 6-12 
m/sec, and the Reynolds numbers are hence on the order of 500-2300. It is known that the magnitude of 
the frontal drag coefficient in the flow around a sphere in this Re number range can be considered constant 
to sufficient accuracy. Air supplied from below into the operating towers has a 0.3-0.6 m/see velocity 
(these magnitudes reach 1.5-1.7 m/sec only in individual structures). There hence follows that the kine- 
matics of air flow around granules should be determined by the air-motion velocity, since the fluctuating 
air-velocity components (the averaged values) have values, in practice, which are substantially less than 
the mean discharge velocity which is approximately an order of magnitude lower than the velocity of 
granule motion. 

In an examination of bodies fallilxg in a gravity field, the papers [1-3] do not yield final solutions to 
determine the fundamental body-motion parameters in an obliquely directed flow in a general formulation 
of the problem. 

Let us examine the general case of a body with a constant drag coefficient dropping in a gravity 
field (turbulent flow with a laminar boundary layer). We take as the initial system of two-dimensional 
m o t i o n  e q u a t i o n s  

m . . . .  p~Frz ~- 
dr ~ Y ~' 

( _  -- mg 
dT 2 \ 2 Ju 

L e t  us  r e p r e s e n t  t h e  s y s t e m  (1) in  d i m e n s i o n l e s s  f o r m .  T o  do t h i s  we  i n t r o d u c e  t h e  f o l l o w i n g  c h a r a c t e r -  

i s t i c  v a r i a b l e s  by  u s i n g  t h e  r e s u l t s  f r o m  [3]: 

(1) 

V -  v u w T x y ; U - -  ; W =  ; O- -  ; X - -  ; Y - -  ~ , 
w ~ w ~ w ~ "r~ gT gT~, 

*Bodies with a size on the order of 1 rnm and greater whose soaring velocities correspond to a turbulent 
flow mode are kept in mind. 
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where woo = f g / a  is the soar ing velocity, a = (1/2m) 0~F; 

~oo �9 =- -  ; w = v + _ u  or W = V + U .  
g 

Consequently, we obtain 

d2X 
- - -  -4- WW= = O, 

�9 dO~ ( l a )  

cFY 
dO---- Y- + WW~ = 1 

or  since 

dX -- W x and d.Y =Wy, 
dO dO 

1 
dO -}- Wx Wy ' ~ 

�9 ( l b )  

dWy + d O  _ W~ ~ / /  ( W - - ~ - ) 2 - - 1 = I  

Here and henceforth,  the upper sign will cor respond to ejection of the par t ic les  at an angle n 0 ~ ~r/2, 
and the lower to - -n  0 > ~/2, where s 0 is an angle measured  f rom a downwardly directed ver t ica l .*  

The relat ionship 

din- W~ _ dO (2) 
W x Wy 

can be obtained f rom the sys tem (la). 

An exact analytical  solution of the sys t em (lb) cannot be pe r fo rmed  successful ly .  However, in con- 
t r a s t  to bal l is t ics  problems which requi re  high accuracy  of the solution, approximate  solutions a re  com- 
pletely acceptabl  e in the examination of engineering questions.  Such an approximate solution has been 
pe r fo rmed  in [3], for  example, when the ra t io  Wx/Wy in (lb) was considered negligible in compar ison to 
one. However, it turned out to be possible to ca r ry  out a broader ,  pract ica l ly  complete solution of the 
question. To do this, we a s sume  that the ra t io  Wy/W x in the f i rs t  equation in the sys tem (lb) is de te r -  
mined by means of the second equation in which the r ight side is taken for the case Wx/Wy << 1. This 
la t te r  assumpt ion  will ref lect  real i ty  more  exactly,  the smal le r  the ra t io  Wx/Wy, and, conversely,  the 
deviation will grow as the ra t io  Wx/Wy inc reases .  

On the other hand, the ra t io  Wy/W x which will be smal le r ,  the g rea te r  the rat io Wx/Wy, is used in 
the f i rs t  equation of the sy s t em (lb). 

There fore ,  although its definition by the above-ment ioned approximate  method will result ,  as Wx/Wy 
inc reases ,  in an increase  in the d i sc repancy  between the Wx/Wy values obtained and the real  values,  
never theless ,  the role of the f i rs t  member  under the radical  in the f i rs t  equation of (lb) will hence drop 
rapidly.  Conversely,  when W y / W x i n c r e a s e s  inthe lat ter  and the role  of this member  grows,  then Wx/Wy 
drops ,  and the accu racy  of determining this ra t io  also grows.  

Taking the above into account, it is quite expedient to solve the sys tem (lb) on the basis of the 
assumpt ion  mentioned. 

Let us express  d0 in t e rms  of dWy f rom the second equation of the sys tem (lb) for (Wx/Wy) 2 << i and 
by substituting this express ion  in the r ight side of (2) we obtain 

* For  the case n 0 = ~r/2 the spoiling of the assumpt ion made about the constancy of the frontal drag coeffi- 
cient is possible .  However,  it should be noted that under all technical  conditions some value of the hor i -  
zontal velocity component is conserved at the point where the ver t ica l  velocity component drops to zero.  
The total velocity can hence be reduced substantial ly and resul t  in spoilage of the assumption about the 
constancy of the drag  coefficient in individual cases .  The considerat ions elucidated above re fe r ,  however, 
just to the domain d i rec t ly  adjacent to a point where the ver t ica l  component becomes zero  and operate,  
correspondingly,  on re la t ively  smal l  sect ions of the body-mot ion  t ra jec to ry .  In sum, the influence of this 
factor  on the final resu l t s  of the computations turns  "out to be insignificant.  
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d In Wy . . . .  dWy (3) 

Solving (3), we find 
- -  2 

% ]  - - ~ 7  ~ ve~ ' 

w h e r e  the  s u b s c r i p t  "0" c o r r e s p o n d s  to  i n i t i a l  c o n d i t i o n s .  
t he  s y s t e m  ( lb) ,  

dW-----z-" ~ W ' r  W~ 
dO , x - x xO 

(4) 

Le t  us  s u b s t i t u t e  (4) in to  the  f i r s t  equa t ion  of 

1 ~- W~o -T W~o = o. (5) 

T a k i n g  1 / W  x as  a new v a r i a b l e  and so lv ing  (5), we ob ta in  fo r  ~0 -< ~/2 

or, f u r t h e r m o r e ,  

fo r  a 0 > ~/2 ,  

W~ = W~o (6) 
ch 0 4- Wo sh 0 

i n t r o d u c i n g  the  no t a t i on  

V 1 + W o  
K = " 1 - -Wo ' 

W~ = 2Wx~ expO 
1 - -  Wo K ~ exp 20 + 1 

(6a) 

W~o t (~)  
W ~ =  I / I + W ~  sin(O+13)  ' 

w h e r e  /3 = a r c  s i n  [ 1 / f l  + W~]. 

The  c o m p u t a t i o n  u s i n g  (6b) i s  c a r r i e d  out un t i l  the  t i m e  when Wy = 0. When  a f u r t h e r  c o m p u t a t i o n  is  
needed ,  the  po in t  c o r r e s p o n d i n g  to  Wy = 0 i s  t a k e n  a s  the  o r i g in ,  and  a c o m p u t a t i o n  is  p e r f o r m e d  f r o m  i t  
by  m e a n s  of (6a) c o r r e s p o n d i n g  to a 0 -< ~/2 .  

An  a n a l o g o u s  me thod  of c o m p u t a t i o n s  for  the  c a s e  ~0 > ~/2 is  t a k e n  in s e e k i n g  the  o t h e r  p a r t i c l e  
m o t i o n  p a r a m e t e r s  by  m e a n s  of the  r e l a t i o n s h i p s  g i v e n  be low .  

Subs t i t u t i ng  d X / d 0  = Vx = Wx~= Ux and i n t e g r a t i n g ,  we f ind (0 = 0 fo r  X = 0) fo r  ~0 -< ~/2 

2W~0 o a r c tg (K  e x p 0 - - !  ) 
X -- V" 1 - -  Wo K 2 exp 0 + 1 ~ Ux0' (7) 

w h e r e  the  f a c t o r s  in  f ron t  of the  a r c t a n  and the In in (7) t u r n  out to  be  i m a g i n a r y  for  W 0 > 1. 

Then  t ak ing  accoun t  of the  known r e l a t i o n s h i p  b e t w e e n  the a r c t a n  and the  in, we ob ta in  in  the  c o m p l e x  
d o m a i n  

X --  W~~ In 1 - -  i/K exp 0 =- i/K ~_ U::O, (7a) 
}/~7~ _ 1 1 + f/K exp 0 - -  i/K 

fo r  a o > ~r/2 

O + ~ _ ( V 1  ' W~ + W o )  ] ~U~O. (Tb) W.~o In tg -T 
x V 1 + w~ 2 J 

To s e e k  Wy and Y, l e t  us  s u b s t i t u t e  the  (6) and (6a) found in to  (2): 

f o r  a0  -< ~/2  

_ dWy q_ K =exp 2 0 - 1  W ~ =  1, 
dO K ~ exp 20 ~ 1 

fo r  c~ 0 > ~,/2 

dW~ + W v ctg (O + ~) = I. 
dO 

.(8) 

(8a) 

The  s o l u t i o n  of t h e s e  equa t i ons  wi l l  b e :  
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for  ~ o -< ~/2 

for  ~ 0 > ~r/2 

exp0 [ W v o ( K 2 +  1)-- (K 2 -  1) @ K2exp0--exp (--0)1, (9) 
Wu - -  K ~ exp 20 ,-}- 1 

Wy = - -  ctg (0 § 1~) -~ WuO § W~ 1 (9a) 
V1 + w~ sin (0 + [l) 

The t ime  when Wy b e c o m e s  ze ro  is de t e rmined  f r o m  (9a), 

Wu~ " W~ arcsin 1 (10) 0 = arccos 1/1 § W~ v ~ '  

a f t e r  which the computa t ion  should be c a r r i e d  out by means  of the equation for  c~ 0 -< ~/2, as has a l ready  
been  ment ioned above.  Seeking X, we analogously  subst i tute  

dY/dO = V u = W v-T- U u, 

and then in tegra te  (9) and (9a). Consequently,  fo r  a 0 -< Ir/'2 we obtain 

Y = l n [  1 2W------~~ (K2exp0 ~', exp (--  0)) ] 2 ( W ~ 1 7 6  arctg exp0--  I --Uy0. (11) 
1 / 1 - -  W~ K exp 0 --' I l K  

For  W 0 > 1, i . e . ,  when the init ial  ve loc i ty  is g r e a t e r  than the soar ing  veloci ty  

[ i ( Y = In 1 - -  W o (K 2 exp 0 -b exp (--  0)) 2 (W o - -  W,, o) In 1 - -  i / K  exp 0 -~ i / K  :-: UyO. ( l l a )  
2 ! - -  (1 - -  Wo) 1 i l k  exp 0 - -  i / K  , 

F o r  s 0 > 3/2 

[ 1 ] I 1 W'a~ --- W~ In tg (W o -:- V1 -i- go) U,a0. ( l lb)  
Y = l n  sin(0-kl3) , l q - g ~  -[ VI- : -Wo 

The essen t i a l  d i f fe rence  between the veloci ty  W 0 and its components  in the re la t ionships  p resen ted  
above should be noted. In the l a t t e r  W 0 is t aken  in absolute  value,  while Wy 0 and Wx0 have signs c o r r e -  
sponding to the i r  d i rec t ions .  

As a compar i son  with computat ions  p e r f o r m e d  on an e lec t ron ic  c o m p u t e r b y  using the sy s t em (1) 
shows,  the dependences obtained above to de t e rmine  the fundamental  g r anu le -mo t ion  p a r a m e t e r s  yield 
not m o r e  than a § m a x i m u m  e r r o r  in the whole range  of init ial  mot ion conditions.  
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N O T A T I O N  

a b s c i s s a ;  
ordinate  (measured  f r o m  the top down); 
pa r t i c l e  veloci ty;  
ve loci ty  of the medium;  
r e l a t ive  pa r t i c l e  veloci ty;  
pa r t i c l e  m a s s ;  
dens i ty  of the medium;  
a r e a  of the Midelev sect ion;  
f ronta l  d rag  coefficient;  
t ime ;  
a c c e l e r a t i o n  of g rav i ty .  

1. 
2 .  
3. 
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